Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 126
1.
Front Plant Sci ; 15: 1346591, 2024.
Article En | MEDLINE | ID: mdl-38476680

Gardeniae Fructus (Zhizi) serves as both a medicinal and edible substance and finds widespread use in various industries. There are often two kinds of medicinal materials in the market: Zhizi and Shuizhizi. Typically, Zhizi with small, round fruit is used for medicinal purposes, while Shuizhizi, characterized by large, elongated fruit, is employed for dyeing. Market surveys have revealed a diverse range of Zhizi types, and modern research indicates that Shuizhizi contains rich chemical components and pharmacological activities. In this study, we collected 25 batches of Zhizi and Shuizhizi samples, categorizing them based on appearance into obovate and round fruits, with seven length grades (A-G). Using the ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS) method, we simultaneously quantified 13 main chemical components in fruits of Gardenia species. In addition, we compared the weight percentage of the pericarp, flesh, and seeds parts of samples with different traits, and quantified 13 chemical components in different parts. Results indicated that, aside from a few instances of overlapping fruit size ranges, Shuizhizi generally exhibits larger and longer dimensions than Zhizi. The weight proportion of the Shuizhizi pericarp is often higher than that of the Zhizi pericarp. Quantitative results highlighted significant differences in the chemical component content between Zhizi and Shuizhizi, with Shuizhizi generally containing higher levels of iridoids. The PCA and OPLS-DA analysis distinctly divided Shuizhizi and Zhizi, among which three iridoids, two organic acids, and one flavonoid made significant contributions to their classification. Cluster heatmap analysis also demonstrated complete separation between Zhizi and Shuizhizi, with clear distinctions among Zhizi samples from different origins. The distribution of the 13 chemical components in different Zhizi and Shuizhizi parts remained consistent, with iridoids and pigments concentrated in the seeds and flesh, and two organic acids and one flavonoid enriched in the pericarp. In summary, this study contributes valuable insights for classifying Zhizi and offers guidance on the rational use of Shuizhizi and the different parts of Zhizi.

2.
Zhongguo Zhong Yao Za Zhi ; 49(1): 39-45, 2024 Jan.
Article Zh | MEDLINE | ID: mdl-38403336

Strontium isotope(~(87)S/~(86)Sr) tracing technology has been widely used in animal remains and origin of modern food origin sources. However, due to the problems of sample contamination and cleaning, this technology has been applied less frequently in the tracing of plant remains. The Palace Museum preserves more than 1 000 relics of medicinal materials from the Forbidden City of the Qing Dynasty, which are rare precious materials for the study of Dao-di herbs. The well-preserved environment of these medicinal materials in the Forbidden City of the Qing Dynasty helps avoid external strontium contamination, making it possible to introduce strontium isotope technology in their tracing research. On this basis, this study discussed the principle of strontium isotope tracing technology and summarized the current research progress on tracing plant remains using strontium isotope. In addition, this study discussed three key problems and their respective solutions encountered when applying strontium isotope technology to the tracing research on medicinal materials from the Forbidden City of the Qing Dynasty: creating strontium isotope ratio maps, dealing with the wide range of traceable results, and addressing the sample contamination and cleaning challenges. The literature and historical materials of the Qing Dynasty are the important basis for understanding the distribution and application of Dao-di herbs in the Qing Dynasty. Based on literature research, the use of strontium isotope to trace the producing area of medicinal materials in the Forbidden City of the Qing Dynasty can provide physical evidence for relevant research. The combined evidence of historical materials and medicinal relics is expected to provide a new perspective for the study of Dao-di herbs in the Qing Dynasty and also provide a reference for the study of the revolution of Dao-di herbs producing areas.


Drugs, Chinese Herbal , Plants, Medicinal , Medicine, Chinese Traditional , Technology , Strontium Isotopes , China
3.
Zhongguo Zhong Yao Za Zhi ; 49(1): 70-79, 2024 Jan.
Article Zh | MEDLINE | ID: mdl-38403340

Flavonoid C-glycosides are a class of natural products that are widely involved in plant defense responses and have diverse pharmacological activities. They are also important active ingredients of Dendrobium huoshanense. Flavanone synthase Ⅱ has been proven to be a key enzyme in the synthesis pathway of flavonoid C-glycosides in plants, and their catalytic product 2-hydroxyflavanone is the precursor compound for the synthesis of various reported flavonoid C-glycosides. In this study, based on the reported amino acid sequence of flavanone synthase Ⅱ, a flavanone synthase Ⅱ gene(DhuFNSⅡ) was screened and verified from the constructed D. huoshanense genome localization database. Functional validation of the enzyme showed that it could in vitro catalyze naringenin and pinocembrin to produce apigenin and chrysin, respectively. The open reading frame(ORF) of DhuFNSⅡ was 1 644 bp in length, encoding 547 amino acids. Subcellular localization showed that the protein was localized on the endoplasmic reticulum. RT-qPCR results showed that DhuFNSⅡ had the highest expression in stems, followed by leaves and roots. The expression levels of DhuFNSⅡ and other target genes in various tissues of D. huoshanense were significantly up-regulated after four kinds of abiotic stresses commonly encountered in the growth process, but the extent of up-regulation varied among treatment groups, with drought and cold stress having more significant effects on gene expression levels. Through the identification and functional analysis of DhuFNSⅡ, this study is expected to contribute to the elucidation of the molecular mechanism of the formation of quality metabolites of D. huoshanense, flavonoid C-glycosides, and provide a reference for its quality formation and scientific cultivation.


Dendrobium , Flavanones , Dendrobium/genetics , Dendrobium/chemistry , Flavanones/metabolism , Flavonoids , Cloning, Molecular , Glycosides/metabolism
4.
Front Plant Sci ; 15: 1289485, 2024.
Article En | MEDLINE | ID: mdl-38344187

Through a meticulous analysis of ancient Chinese literature, this study comprehensively documents the geographical distribution of Fuling, a traditional Chinese medicinal material, during the Tang, Song, Ming, and Qing dynasties spanning from the seventh to the twentieth century in China. Based on the contemporary distribution information of Fuling, we utilized the maximum entropy (MaxEnt) model to simulate the suitable distribution areas of Fuling under both present-day conditions and in the future (2081~2100). The findings reveal that climate change has influenced the distribution of Fuling production areas. The shifts in Fuling's origin during different periods in ancient and modern times align with climate fluctuations and concurrent societal development. During the Tang and Song dynasties, Fuling primarily originated in northern China. However, it migrated southward during the Little Ice Age (LIA) and has recently shown a slight northward shift, in line with the climate fluctuations of the LIA and contemporary global warming trends. This study offers a comprehensive analysis of the changes in the distribution and production areas of Fuling over a 1500-year period, encompassing ancient, modern, and future periods. The results provide critical insights for adjusting Fuling cultivation areas in response to climate change and for further exploration of the mechanisms through which climate impacts the growth of Fuling.

5.
Int J Biol Macromol ; 255: 128218, 2024 Jan.
Article En | MEDLINE | ID: mdl-37992933

Peucedanum praeruptorum Dunn, a traditional Chinese medicine rich in coumarin, belongs to the Apiaceae family. A high-quality assembled genome of P. praeruptorum is lacking, which has posed obstacles to functional identification and molecular evolution studies of genes associated with coumarin production. Here, a chromosome-scale reference genome of P. praeruptorum, an important medicinal and aromatic plant, was first sequenced and assembled using Oxford Nanopore Technologies and Hi-C sequencing. The final assembled genome size was 1.83 Gb, with a contig N50 of 11.12 Mb. The entire BUSCO evaluation and second-generation read comparability rates were 96.0 % and 99.31 %, respectively. Furthermore, 99.91 % of the genome was anchored to 11 pseudochromosomes. The comparative genomic study revealed the presence of 18,593 orthogroups, which included 476 species-specific orthogroups and 1211 expanded gene families. Two whole-genome duplication (WGD) events and one whole-genome triplication (WGT) event occurred in P. praeruptorum. In addition to the γ-WGT shared by core eudicots or most eudicots, the first WGD was shared by Apiales, while the most recent WGD was unique to Apiaceae. Our study demonstrated that WGD events that occurred in Apioideae highlighted the important role of tandem duplication in the biosynthesis of coumarins and terpenes in P. praeruptorum. Additionally, the expansion of the cytochrome P450 monooxygenase, O-methyltransferase, ATP-binding cassette (ABC) transporter, and terpene synthase families may be associated with the abundance of coumarins and terpenoids. Moreover, we identified >170 UDP-glucosyltransferase members that may be involved in the glycosylation post-modification of coumarins. Significant gene expansion was observed in the ABCG, ABCB, and ABCC subgroups of the ABC transporter family, potentially facilitating the transmembrane transport of coumarins after bolting. The P. praeruptorum genome provides valuable insights into the machinery of coumarin biosynthesis and enhances our understanding of Apiaceae evolution.


Apiaceae , Coumarins , Coumarins/chemistry , Cytochrome P-450 Enzyme System/genetics , Apiaceae/genetics , Apiaceae/chemistry , Methyltransferases/genetics , Chromosomes
6.
Planta ; 258(6): 115, 2023 Nov 09.
Article En | MEDLINE | ID: mdl-37943378

MAIN CONCLUSION: Two trans-isopentenyl diphosphate synthase and one squalene synthase genes were identified and proved to be involved in the triterpenoid biosynthesis in Platycodon grandiflorus. Platycodon grandiflorus is a commonly used traditional Chinese medicine. The main bioactive compounds of P. grandiflorus are triterpenoid saponins. The biosynthetic pathway of triterpenoid saponins in P. grandiflorus has been preliminarily explored. However, limited functional information on related genes has been reported. A total of three trans-isopentenyl diphosphate synthases (trans-IDSs) genes (PgFPPS, PgGGPPS1 and PgGGPPS2) and one squalene synthase (SQS) gene (PgSQS) in P. grandiflorus were screened and identified from transcriptome dataset. Subcellular localization of the proteins was defined based on the analysis of GFP-tagged. The activity of genes was verified in Escherichia coli, demonstrating that recombinant PgFPPS catalysed the production of farnesyl diphosphate. PgGGPPS1 produced geranylgeranyl diphosphate, whereas PgGGPPS2 did not exhibit catalytic activity. By structural identification of encoding genes, a transmembrane region was found at the C-terminus of the PgSQS gene, which produced an insoluble protein when expressed in E. coli but showed no apparent effect on the enzyme function. Furthermore, some triterpenoid saponin synthesis-related genes were discovered by combining the component content and the gene expression assays at the five growth stages of P. grandiflorus seedlings. The accumulation of active components in P. grandiflorus was closely associated with the expression level of genes related to the synthesis pathway.


Platycodon , Saponins , Farnesyl-Diphosphate Farnesyltransferase/genetics , Platycodon/genetics , Escherichia coli/genetics , Saponins/genetics
7.
Front Plant Sci ; 14: 1179915, 2023.
Article En | MEDLINE | ID: mdl-37600207

The genus Peucedanum L. (Apiaceae) is a large group comprising more than 120 species distributed worldwide. Many plants of the genus Peucedanum have been studied and used in traditional Chinese medicine. In 2020, a new species, Peucedanum huangshanense Lu Q. Huang, H. S. Peng & S. S. Chu, was found in the Huangshan Mountains of Anhui Province, China. However, little is known about its medicinal properties. Thus, the objective of this study is to explore the potential medicinal value of P. huangshanense and its relationship with other Peucedanum species. Through textual research on illustrations of Qianhu in Bencao literature, it can be inferred that at least five species of genus Peucedanum have been used in Chinese medicine. Therefore, we chose these five species of Peucedanum and P. huangshanense together for subsequent research. We conducted morphological, chloroplast genome, and chemical analyses of six Peucedanum species, including the newly discovered P. huangshanense. The chloroplast genomes of Peucedanum showed a typical tetrad structure, and the gene structure and content were similar and conservative. There were significant differences in genome size and the expansion of the inverted repeat boundary. Through nucleotide polymorphism analysis, we screened 14 hotspot mutation regions that have the potential to be used as specific molecular markers for the taxonomy of Peucedanum. Our results showed an inversion of the trnD-trnY-trnE gene in the P. huangshanense chloroplast genome, which can be developed as a specific molecular marker for species identification. Phylogenetic analysis showed that the phylogenetic trees had high support and resolution, which strongly supports the view that Peucedanum is not a monophyletic group. P. huangshanense had the closest genetic relationship to P. ampliatum K. T. Fu, followed by P. harry-smithii Fedde ex Wolff. Furthermore, the main coumarins of P. huangshanense were most similar to those of P. japonicum Thunb. and P. harry-smithii. In summary, our research lays a foundation for the systematic classification of Peucedanum and sheds light on the medicinal value of P. huangshanense.

8.
Zhongguo Zhong Yao Za Zhi ; 48(11): 3118-3123, 2023 Jun.
Article Zh | MEDLINE | ID: mdl-37381970

Poria(Fu Ling) is a bulk traditional Chinese medicine(TCM)with a long history and complex varieties. The royal medical records of the Qing Dynasty include multiple medicinal materials of Fu Ling, such as Bai Fu Ling(white Poria), Chi Fu Ling(rubra Poria), and Zhu Fu Ling(Poria processed with cinnabaris). The Palace Museum preserves 6 kinds of specimens including Fu Ling Ge(dried Poria), Bai Fu Ling, Chi Fu Ling, Zhu Fu Ling, Bai Fu Shen(white Poria cum Radix Pini), and Fu Shen Mu(Poria cum Radix Pini). After trait identification and textual research, we found that Fu Ling Ge was an intact sclerotium, which was processed into Fu Ling Pi(Poriae Cutis), Bai Fu Ling and other medicinal materials in the Palace. The Fu Ling in the Qing Dynasty Pa-lace was mainly from the tribute paid of the officials in Yunnan-Guizhou region. The tribute situation was stable in the whole Qing Dynasty, and changed in the late Qing Dynasty. The cultural relics of Fu Ling in the Qing Dynasty Palace confirm with the archival documents such as the royal medical records and herbal medicine books, providing precious historical materials for understanding Fu Ling in the Qing Dynasty and a basis for the restoration of the processing of the Fu Ling in the Qing Dynasty Palace.


Coleoptera , Poria , Wolfiporia , Animals , China , Books , Medical Records
9.
Hortic Res ; 10(5): uhad047, 2023 May.
Article En | MEDLINE | ID: mdl-37213683

Fallopia multiflora (Thunb.) Harald, a vine belonging to the Polygonaceae family, is used in traditional medicine. The stilbenes contained in it have significant pharmacological activities in anti-oxidation and anti-aging. This study describes the assembly of the F. multiflora genome and presents its chromosome-level genome sequence containing 1.46 gigabases of data (with a contig N50 of 1.97 megabases), 1.44 gigabases of which was assigned to 11 pseudochromosomes. Comparative genomics confirmed that F. multiflora shared a whole-genome duplication event with Tartary buckwheat and then underwent different transposon evolution after separation. Combining genomics, transcriptomics, and metabolomics data to map a network of associated genes and metabolites, we identified two FmRS genes responsible for the catalysis of one molecule of p-coumaroyl-CoA and three molecules of malonyl-CoA to resveratrol in F. multiflora. These findings not only serve as the basis for revealing the stilbene biosynthetic pathway but will also contribute to the development of tools for increasing the production of bioactive stilbenes through molecular breeding in plants or metabolic engineering in microbes. Moreover, the reference genome of F. multiflora is a useful addition to the genomes of the Polygonaceae family.

10.
Food Res Int ; 164: 112314, 2023 02.
Article En | MEDLINE | ID: mdl-36737903

Chaenomeles speciosa fruit is a homologous medicine and food plant with a long history of multiple uses. It could be harvested near maturity and last for a long time. However, the optimal harvest strategy of Chaenomeles speciosa for various uses is currently unavailable. Here, untargeted metabolome at different harvest times during maturation was investigated for the first time, and 896 metabolites, including sugars, organic acids, amino acids, and phenylpropanoids, were identified. Optimal harvesting methods were proposed for different purposes. During the early maturation stages (before 105 days after full bloom), Ch. speciosa fruit could be harvested as Chinesemedicine. Whereas as snacks and food, Ch. speciosa fruit might be harvested at late maturity (after 120 days after full bloom). In addition, the overall network was revealed by integrating full-length Iso-seq and transcriptomics (RNA-seq) to investigate the association between quality-associated metabolites and Chaenomeles speciosa fruit gene expression during maturation. A few putative genes were captured via screening, dissecting and correlation analysis with the quality-associated metabolites (including d-glucose, catechin, gallocatechin, and succinic acid). Overall, in addition to providing a harvesting strategy for food and medicine, we also investigated the metabolism and gene expression pattern of Chaenomeles speciosa fruit during maturation. This comprehensive data and analyses laid the foundation for further investigating potential regulatory mechanisms during harvest and provided a new possibility for its development and utilization.


Fruit , Rosaceae , Fruit/chemistry , Gene Expression Profiling , Acids/analysis , Metabolome , Rosaceae/genetics , Rosaceae/chemistry
12.
Int J Biol Macromol ; 225: 1543-1554, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36436603

Atractylodes lancea (Thunb.) DC. is an important medicinal plant mainly distributed in China. A. lancea is rich in volatile oils and has a significant effect on various diseases, including coronavirus disease 2019 (COVID-19). Based on the signature constituents of volatile oils, A. lancea is divided into two chemotypes: the Dabieshan and Maoshan chemotype. Gas chromatography-mass spectrometry (GC-MS) results revealed that the hinesol and ß-eudesmol contents in the Dabieshan chemotype were higher than those in the Maoshan chemotype. Next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing technologies were combined to investigate the molecular mechanisms of sesquiterpenoid biosynthesis in A. lancea. A total of 42 differentially expressed genes (DEGs) for terpenoid biosynthesis were identified in the two chemotype groups, and nine full-length terpene synthase (TPS) genes were identified. Subcellular localization revealed that AlTPS1 and AlTPS2 proteins were localized in the nucleus and endoplasmic reticulum. They use FPP as a substrate to generate sesquiterpenoids. AlTPS1 catalyzes biosynthesis of elemol while AlTPS2 is observed to perform ß-farnesene synthase activity. This study provides information for understanding the differences in the accumulation of terpenoids in two chemotypes of A. lancea and lays a foundation for further elucidation of the molecular mechanism of sesquiterpenoid biosynthesis.


Atractylodes , COVID-19 , Oils, Volatile , Sesquiterpenes , Atractylodes/chemistry , Sesquiterpenes/metabolism , Oils, Volatile/chemistry , Gene Expression Profiling
13.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5817-5823, 2022 Nov.
Article Zh | MEDLINE | ID: mdl-36471999

Imported medicinal materials are an important part of Chinese medicinal resources. To be specific, about 10% of the around 600 commonly used Chinese medicinal materials are from abroad, and the introduction of foreign medicinal materials has promoted the development of Chinese medicine. Amid the advancement of reform and opening up and the "Belt and Road" Initiative, major headway has been made in the cross-border trade in China, bringing opportunities for the import of medicinal materials from border ports. However, for a long time, there is a lack of systematic investigation on the types of exotic medicinal materials at border ports. In the fourth national census of traditional Chinese medicine resources, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, together with several organizations, investigated the nearly 40 border ports, Chinese medicinal material markets, and border trade markets in 6 provinces/autonomous regions in China for the first time and recorded the types, sources, circulation, and the transaction characteristics of imported medicinal materials. Moreover, they invited experts to identify the origins of the collected 237 medicinal materials. In addition, the status quo and the problems of the medicinal materials were summarized. This study is expected to lay a basis for clarifying the market and origins of imported medicinal materials as well as the scientific research on and supervision of them.


Drugs, Chinese Herbal , Materia Medica , Medicine, Chinese Traditional , Records , Censuses , China
14.
Front Plant Sci ; 13: 1011001, 2022.
Article En | MEDLINE | ID: mdl-36352875

The symbiotic relationship between beneficial microorganisms and plants plays a vital role in natural and agricultural ecosystems. Although Peucedanum praeruptorum Dunn is widely distributed, its development is greatly limited by early bolting. The reason for early bolting in P. praeruptorum remains poorly characterized. We focus on the plant related microorganisms, including endophytes and rhizosphere microorganisms, by combining the traditional isolation and culture method with metagenomic sequencing technology. We found that the OTUs of endophytes and rhizosphere microorganisms showed a positive correlation in the whole growth stage of P. praeruptorum. Meanwhile, the community diversity of endophytic and rhizosphere fungi showed an opposite change trend, and bacteria showed a similar change trend. Besides, the microbial communities differed during the pre- and post-bolting stages of P. praeruptorum. Beneficial bacterial taxa, such as Pseudomonas and Burkholderia, and fungal taxa, such as Didymella and Fusarium, were abundant in the roots in the pre-bolting stage. Further, a strain belonging to Didymella was obtained by traditional culture and was found to contain praeruptorin A, praeruptorin B, praeruptorin E. In addition, we showed that the fungus could affect its effective components when it was inoculated into P. praeruptorum. This work provided a research reference for the similar biological characteristics of perennial one-time flowering plants, such as Saposhnikovia divaricate, Angelica sinensis and Angelica dahurica.

15.
Protein Pept Lett ; 29(12): 1061-1071, 2022.
Article En | MEDLINE | ID: mdl-36045540

Platycodon grandiflorus is a well-known and widely distributed traditional herbal medicine and functional food in Asia, with triterpenoids as the main bioactive component in its roots. Acetyl-CoA C-acetyltransferase (AACT) is the initiation enzyme in the mevalonate pathway and plays an important role in the biosynthesis of terpenoids. OBJECTIVE: The objective of this study was to clone and identify the PgAACT function in P. grandiflorus. METHODS: The full-length sequence of PgAACT genes was isolated and cloned from P. grandiflorus by polymerase chain reaction (PCR). The recombinant plasmid was constructed using the pET-32a vector and expressed in E. coli Transetta (DE3) cells. Subcellular localization of AACT was observed in the epidermal cells of N. tabacum. Quantitative reverse transcription-PCR (qRT-PCR) was used to identify the PgAACT gene transcription levels. After MeJA treatment, the changes in AACT gene expression were observed, and UHPLC-Q-Exactive Orbitrap MS/MS was used to detect the changes in P. grandiflorus saponins. RESULTS: In this study, two full-length cDNAs encoding AACT1 (PgAACT1) and AACT2 (PgAACT2) were isolated and cloned from P. grandiflorus. The deduced PgAACT1 and PgAACT2 proteins contain 408 and 416 amino acids, respectively. The recombinant vectors were constructed, and the protein expression was improved by optimizing the reaction conditions. Sodium dodecyl sulphate-polycrylamide gel electrophloresis and western blot analysis showed that the PgAACT genes were successfully expressed, with molecular weights of the recombinant proteins of 61 and 63 kDa, respectively. Subcellular localization showed that the PgAACT genes were localized in the cytoplasm. Tissue specificity analysis of P. grandiflorus from different habitats showed that PgAACT genes were expressed in the roots, stems, and leaves. After MeJA treatment, the expression level of PgAACT genes and the content of total saponins of P. grandiflorus were significantly increased, suggesting that PgAACT genes play an important role in regulating plant defense systems. CONCLUSION: Cloning, expression, and functional analysis of PgAACT1 and PgAACT2 will be helpful in understanding the role of these two genes in terpene biosynthesis.


Platycodon , Saponins , Platycodon/genetics , Platycodon/metabolism , Acetyl-CoA C-Acetyltransferase/genetics , Acetyl-CoA C-Acetyltransferase/metabolism , DNA, Complementary/genetics , Gene Expression Regulation, Plant , Escherichia coli/genetics , Tandem Mass Spectrometry , Cloning, Molecular , Terpenes
16.
Plant Signal Behav ; 17(1): 2089473, 2022 12 31.
Article En | MEDLINE | ID: mdl-35730590

Platycodon grandiflorus, a perennial flowering plant widely distributed in China and South Korea, is an excellent resource for both food and medicine. The main active compounds of P. grandiflorus are triterpenoid saponins. WRKY transcription factors (TFs) are among the largest gene families in plants and play an important role in regulating plant terpenoid accumulation, physiological metabolism, and stress response. Numerous studies have been reported on other medicinal plants; however, little is known about WRKY genes in P. grandiflorus. In this study, 27 PgWRKYs were identified in the P. grandiflorus transcriptome. Phylogenetic analysis showed that PgWRKY genes were clustered into three main groups and five subgroups. Transcriptome analysis showed that the PgWRKY gene expression patterns in different tissues differed between those in Tongcheng City (Southern Anhui) and Taihe County (Northern Anhui). Gene expression analysis based on RNA sequencing and qRT-PCR analysis showed that most PgWRKY genes were expressed after induction with methyl jasmonate (MeJA). Co-expressing PgWRKY genes with triterpenoid biosynthesis pathway genes revealed four PgWRKY genes that may have functions in triterpenoid biosynthesis. Additionally, functional annotation and protein-protein interaction analysis of PgWRKY proteins were performed to predict their roles in potential regulatory networks. Thus, we systematically analyzed the structure, evolution, and expression patterns of PgWRKY genes to provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in triterpenoid biosynthesis.


Platycodon , Triterpenes , Acetates , Cyclopentanes , Gene Expression Regulation, Plant/genetics , Oxylipins , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Platycodon/genetics , Platycodon/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/genetics
17.
Front Plant Sci ; 13: 878796, 2022.
Article En | MEDLINE | ID: mdl-35668802

Root size is a key trait in plant cultivation and can be influenced by the cultivation environment. However, physical evidence of root size change in a secular context is scarce due to the difficulty in preserving ancient root samples, and how they were modified during the domestication and cultivation stays unclear. About 100 ancient root samples of Panax notoginseng, preserved as tribute in the Palace Museum (A.D. 1636 to 1912, Qing dynasty), provided an opportunity to investigate the root size changes during the last 100 years of cultivation. The dry weight of ancient root samples (~120 tou samples, tou represents number of roots per 500 g dry weight) is 0.22-fold of the modern samples with the biggest size (20 tou samples). Transcriptome analysis revealed that PnGAP and PnEXPA4 were highly expressed in 20 tou samples, compared with the 120 tou samples, which might contribute to the thicker cell wall and a higher content of lignin, cellulose, and callose in 20 tou samples. A relatively lower content of dencichine and higher content of ginsenoside Rb1 in 20 tou samples are also consistent with higher expression of ginsenoside biosynthesis-related genes. PnPHL8 was filtrated through transcriptome analysis, which could specifically bind the promoters of PnGAP, PnCYP716A47, and PnGGPPS3, respectively. The results in this study represent the first physical evidence of root size changes in P. notoginseng in the last 100 years of cultivation and contribute to a comprehensive understanding of how the cultivation environment affected root size, chemical composition, and clinical application.

18.
J Ethnopharmacol ; 293: 115329, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35490901

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza Bunge is a bulk medicinal material used in traditional Chinese medicine, that can cure cardiovascular diseases, neurasthenia, and other conditions. Sweating is a frequently used method of processing S. miltiorrhiza for medical applications. We previously demonstrated changes to the metabolic profile of linoleic acid, glyoxylate, and dicarboxylate after Sweating. However, this alteration has not been explained at the molecular level. MATERIALS AND METHODS: Fresh roots of Salvia miltiorrhiza Bunge were treated by the Sweating processing, and then the tandem mass tag technique was used to compare the proteome difference between Sweating S. miltiorrhiza and non-Sweating S. miltiorrhiza. RESULTS: We identified a total of 850 differentially expressed proteins after Sweating treatment in S. miltiorrhiza, including 529 upregulated proteins and 321 downregulated proteins. GO enrichment analysis indicated that these differentially expressed proteins are involved in external encapsulating structure, cell wall, oxidoreductase activity, ligase activity, and others. Further analysis showed that CYP450, the pathogenesis-related protein Bet v 1 family, and the peroxidase domain were the major protein domains. KEGG enrichment identified 18 pathways, of which phenylpropanoid biosynthesis is the most important one related to the metabolite profile and is the principal chemical component of S. miltiorrhiza. CONCLUSION: This study addressed potential molecular mechanisms in S. miltiorrhiza after Sweating, and the findings provide reasons for the changes in biochemical properties and metabolites changes which might cause pharmacological variation at the proteome level.


Salvia miltiorrhiza , Medicine, Chinese Traditional , Plant Roots/metabolism , Proteome , Proteomics , Salvia miltiorrhiza/chemistry , Sweating
19.
Front Plant Sci ; 13: 891775, 2022.
Article En | MEDLINE | ID: mdl-35519815

Polygonati rhizoma (Huangjing in Chinese) is a traditional and classic dual-purpose material used in food and medicine. Herbalists in China and Japan have noticed several different rhizome types in Huangjing with different qualities. Rhizome of Polygonatum cyrtonema Hua and P. sibiricum Red. is divided into five types: "Jitou-type" Polygonati rhizoma (JTPR), atypical "Jitou-type" Polygonati rhizoma (AJTPR), "Jiang-type" Polygonati rhizoma (JPR), "Cylinder-type" Polygonati rhizoma (CPR), and "Baiji-type" Polygonati rhizoma (BJPR). This study observed the microstructure and histochemical localization of polysaccharides, saponins, and proteins in Huangjing. Nutritional and medicinal component data and antioxidant capacity (DPPH and ABTS) were analyzed to evaluate the quality of different types of Huangjing. The results showed that the comprehensive quality of the rhizomes, BJPR and JTPR, was better, regardless of their nutritional or medicinal values. Altogether, these results could recommend future breeding efforts to produce Huangjing with improved nutritional and medicinal qualities.

20.
Planta ; 255(5): 102, 2022 Apr 12.
Article En | MEDLINE | ID: mdl-35412154

MAIN CONCLUSION: Glandular trichomes of Artemisia argyi H. Lév. & Vaniot are the key tissues for the production of flavonoid and terpenoid metabolites. Artemisia argyi H. Lév. & Vaniot is an herbaceous perennial plant that has been widely used in traditional medicine for thousands of years. Glandular trichomes (GTs) and nonglandular trichomes (NGTs) have been reported on the leaf surface of A. argyi. The aim of this study was to elucidate the morphogenetic process and to analyze the metabolites of trichomes in A. argyi. The morphogenesis of GTs and NGTs was characterized using light, scanning, and transmission electron microscopy. The constituents of GTs were analyzed using laser microdissection combined with gas and liquid chromatography-mass spectrometry. Five developmental stages of two types of GTs and four developmental stages of one type of NGTs were observed. Two types of mature GT and one type of NGT were composed of 10, 5, and 4-6 cells, respectively. A large storage cavity was detected between the cuticle and cell walls in the first type of mature GT. Large nuclei, nucleoli, and mitochondria were observed in the basal and intermediate cells of the second type of GT. In addition, large vacuoles were observed in the basal and apical cells, and large nuclei were observed in the middle cells of NGTs. One monoterpene and seven flavonoids were identified in GTs of A. argyi. We suggest that GTs are the key tissues for the production of bioactive metabolites in A. argyi. This study provides an important theoretical basis and technical approach for clarifying the regulatory mechanisms for trichome development and bioactive metabolite biosynthesis in A. argyi.


Artemisia , Trichomes , Artemisia/metabolism , Flavonoids/analysis , Morphogenesis , Plant Leaves/metabolism , Terpenes/metabolism , Trichomes/metabolism
...